Citric Acid-based Hydroxyapatite Composite Scaffolds Enhance Calvarial Regeneration
نویسندگان
چکیده
Citric acid-based polymer/hydroxyapatite composites (CABP-HAs) are a novel class of biomimetic composites that have recently attracted significant attention in tissue engineering. The objective of this study was to compare the efficacy of using two different CABP-HAs, poly (1,8-octanediol citrate)-click-HA (POC-Click-HA) and crosslinked urethane-doped polyester-HA (CUPE-HA) as an alternative to autologous tissue grafts in the repair of skeletal defects. CABP-HA disc-shaped scaffolds (65 wt.-% HA with 70% porosity) were used as bare implants without the addition of growth factors or cells to renovate 4 mm diameter rat calvarial defects (n = 72, n = 18 per group). Defects were either left empty (negative control group), or treated with CUPE-HA scaffolds, POC-Click-HA scaffolds, or autologous bone grafts (AB group). Radiological and histological data showed a significant enhancement of osteogenesis in defects treated with CUPE-HA scaffolds when compared to POC-Click-HA scaffolds. Both, POC-Click-HA and CUPE-HA scaffolds, resulted in enhanced bone mineral density, trabecular thickness, and angiogenesis when compared to the control groups at 1, 3, and 6 months post-trauma. These results show the potential of CABP-HA bare implants as biocompatible, osteogenic, and off-shelf-available options in the repair of orthopedic defects.
منابع مشابه
Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects
Hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and whitlockite (WH; Ca18Mg2(HPO4)2(PO4)12) are widely utilized in bone repair because they are the main components of hard tissues such as bones and teeth. In this paper, we synthesized HAP and WH hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through microwave-assisted hydrothermal method....
متن کاملPreparation and Functional Assessment of Composite Chitosan-Nano-Hydroxyapatite Scaffolds for Bone Regeneration
Composite chitosan-nano-hydroxyapatite microspheres and scaffolds prepared using a co-precipitation method have shown potential for use in bone regeneration. The goal of this research was to improve the functional properties of the composite scaffolds by modifying the fabrication parameters. The effects of degree of deacetylation (DDA), drying method, hydroxyapatite content and an acid wash on ...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملDevelopment of Chitosan Based Scaffolds for Bone Regeneration: A Preliminary Report
An ideal scaffold for bone regeneration will provide adequate mechanical support and eventually degrade after bone healing without causing harm to the body. Chitosan, mixed with carboxymethyl chitosan, creates a scaffold with high porosity, but low mechanical strength. Therefore, the objective of this research is to develop biofunctional chitosan based scaffolds for possible application in bone...
متن کاملEnhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites.
Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as wel...
متن کامل